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Abstract

This paper presents a reliable algorithm for the eval-

uation of a quadratic performance index and its gra-

dients with respect to the controller design param-

eters. The algorithm is part of a design algorithm
for optimal linear dynamic output-feedback controller

that minimizes a finite-time quadratic performance

index. The numerical scheme is particularly robust

when it is applied to the control-law synthesis for sys-

tems with densely packed modes and where there is

a high likelihood of encountering degeneracies in the

closed-loop eigensystem. This approach through the

use of an accurate Pad_ series approximation does

not require the closed-loop system matrix to be di-

agonalizable. The algorithm has been included in a

control design package for optimal robust low-order
controllers. Usefulness of the proposed numerical al-

gorithm has been demonstrated using numerous prac-

tical design cases where degeneracies occur frequently
in the closed-loop system under an arbitrary con-

troller design initialization and during the numerical
search.

1 Introduction

Traditional design methods in linear optimal control
for continuous-time systems have been extensively

treated in recent literature [1]. Development of these

control systems are usually based on characterization

of the control problem under the setting of optimiza-
tion of the two-norm of a set of controlled output re-

sponses to random disturbance inputs or initial condi-

tions. Additional consideration of design robustness

is taken by formulating the problem to include H °°-
norm bound constraints for a class of additive and
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multiplicative uncertainties applied at the plant in-

puts and/or outputs. Solutions axe obtained for both

the state- and output-feedback design problems and

involve in the majority of cases solving an appropri-

ate set of algebraic Riccati equations [2, 3]. Theoret- ,_
ical studies of these approaches have been the major ::

concern of researchers in the control field and major r J

breakthrough has been made in recent work by Stoor- _J

vogel [4, 5]. An alternate and seldomly mentioned de- ::_
sign option for robust multivariable control of linear

time-invariant systems is based on direct numerical

optimization of a quadratic performance index with

an arbitrarily specified controller structure. We be-
lieve that careful formulation of the design problem

under nonlinear constrained optimization can be of .r
great value in the synthesis of robust multivariable

control systems. :_

Early work in this area have been published by "_

Levine and Athans [6], Anderson and Moore [7], and
extensive review of the subject was performed by <.

Makila [8]. Recently, a new look into parameter op- ,,I ,_.

timization to multivariable control synthesis is pro- ._
J -

vided by Ly [9] where he used a quadratic perfor- :__

mance based on finite-time horizon. In the latter :, .

work, a numerical optimization technique based on
L

[10] was used. At each design iteration it requires a ....J

precise evaluation of a finite-time quadratic perfor- '._

mance index and its gradients with respect to the .._

design parameters. Analytical expressions have been :L
developed to evaluate these quantities under the key

assumption that the closed-loop system being diag- ,
onalizable. This assumption is found to be unsat-

isfactory and is the cause of convergence difficulties
in the iterative search when it attempts to invert an

ill-conditionned eigenvector matrix for the diagonal-

ization. The work presented in this paper is to re-

solve this numerical difficulty and thereby extends

the results of Ly [9] for cases where the closed-loop

systems are degenerate, i.e the closed-loop system has



repeatedeigenvaluesandthecorrespondingset of sys-

tem eigenvectors does not span the whole state-space

of the closed-loop system.

The paper is organized as follows. Section 2 re-

views the problem formulation for a linear opti-

mal control design using direct parameter optimiza-

tion. Analytical expressions for the evaluation of the

quadratic cost function and its gradients with respect

to the controller design parameters are also given in

section 2. The current approach to evaluate these

quantities are briefly reviewed in section 3. An alter-
nate numerical scheme for the exponential matrix and

convolution integrals involving exponential matrices

is presented in section 4. Approximation methods for
the evaluation of these matrix quantities using Padd

series are described in details in sections 5, 6, and 7.

A design algorithm based on these numerical solution

schemes has been incorporated into a computer-aided

design package described in [9]. A simple design prob-

lem to motivate the need for a numerical algorithm

that handles degeneracies in the closed-loop system

matrix is given in section 8. Optimal solutions are

obtained using the proposed method and the diago-

nalization method from [9]. The numerical algorithm

has also been applied to the synthesis of an active

control system for the JPL large space structure de-

veloped under the LSCL research program [16]. Re-
suits of this application are presented in section 9.

Conclusions are given in section 10.

2 Problem Formulation

In this section, we recall the problem formulation de-

scribed in Ly [9] for the control synthesis of a robust

low-order controller in a linear time-invariant system.

The system Pi(s) is controlled by a constant-gain

controller C(s) as depicted in Figure 1 where y_(s) is

the controlled output vector, y_(s) tile measurement

output vector, wi(s) the disturbance input vector and

ui(s) the control input vector. As a consistent nota-

tion, the superscript i is used throughout this paper
to denote the system model at the i th plant condi-

tion. Note that the controller C(s) is considered to

be fixed, i.e does not vary with the design condition.

It is modelled as a linear time-invariant system of ar-

bitrary order whose formulation accomodates both a
feedforward and a feedback controller structures. Ro-

bustness requirement in the context of our problem
formulation is defined under the conditions that the

control system C(s) stabilizes the plant Pi(s) over a

class of design conditions (i = 1, Np).

State equations describing the system model Pi(s)

of Figure 1 are as follows. Notice that, in the prob-

lem formulation, we assume without loss of gener-

alities that all the system states are initially acqui-

escent. This assumption is not restrictive since one

can always establish impulsive inputs wi(t) together

with the appropriate influence matrix to represent

any state initial conditions. At the i th plant condi-

tion, the system design model is described by equa-

tions (1)-(3) below.

State Equations:

{ x'(t) = Fixi(t) + Giui(t) + Fiwi(t)xi(0) = 0 (1)

where xi(t) is a n x 1 plant state vector, ui(t) an

m x 1 control vector, wi(t) an m' x 1 disturbance-

input vector, F i an n x n state matrix, G i an n x m

control distribution matrix and r i an n x m' input-
disturbance distribution matrix.

Measurement Equations:

i i
y_(t) = H_xi(t) + n_uui(t) + n,ww (t) (2)

where y_(t) is a p x I measurement vector, Hs/ a

p x n state-to-measurement distribution matrix, D_u

a p x m control-to-measurement distribution matrix

and D_ a p x m' input-disturbance-to-measurement
distribution matrix.

Criterion Equations:

y_(t) = _;j(t) + D2u'(t ) + D_wwi(t ) (3)

where yic(t ) is a pl x 1 criterion vector, H_ a p' x n

state-to-criterion distribution matrix, D_= a p' x m

control-to-criterion distribution matrix and D_w a

p' x m' input-disturbance-to-criterion distribution
matrix.

For generality, the disturbances wi(t) are modeled

as outputs of a linear time-invariant system excited

by either impulse inputs or white noises. In this man-

ner, one can shape the disturbance signals to have any

deterministic responses (e.g filtered step functions, si-

nusoidal functions, exponentially decayed or growing

sinusoidal fimctions, etc...) or to model stochastic in-

puts with any given power spectral density functions.
At the i ta plant condition, the disturbance model is

given by equations (4)-(5) below.

Disturbance State Equations:

'i i i

F'x_(t) +
, (4)• = o

where xiw(t) is an' x 1 disturbance state vector,

Tli(t) a m' x 1 vector of either parameterized ran-

dom impulses (i.e r/i(t) = rlio6(t) with E[r/_] = 0, and

E[rlorloiiT]__ _'Vo), or white-noise processes rli(t) with

zero mean and covariance E[11i(t)lliT(r)] = Wo_(t-



r). The matrix Wo is an m' x m _ diagonal positive

semi-definite matrix, F_ an n' x n _ state matrix of
the disturbance model and F_ an n j x m j input-

distribution matrix.

Disturbance Output Equations:

wi(t) i i= H x=(t) + ¢(t) (5)

where wi(t) is a m' x 1 disturbance output vector,

H / an m j x n I disturbance output matrix and D /

an m _ x m _ direct feedthrough distribution matrix.

State model of the controller C(s) in Figure 1 is

that of a linear time-invariant system described by

equations (6)-(7) below.
Controller State Equations:

_(t) = Az(t) + By_(t) (6)z(0) o

where z(t) is a r x 1 controller state vector, A a

r x r state matrix of the controller and B a r x p

measurement-input distribution matrix.

Control Equations:

ui(t) = Cz(t) + Dy_(t) (7)

where ui(t) is an m x 1 feedback control vector, C
an m x r control-output distribution matrix and D

an m x p direct feedthrough matrix.
For control-law synthesis, all the elements of the

controller state matrices can be chosen as design pa-

rameters and some of them can be left fixed at pre-

assigned values. In addition, if needed, linear and

nonlinear equality or inequality constraints can be

established among the selected design parameters in

order to ensure a particular design structure. For con-
venience in the derivation of the performance index

and its gradients with respect to the controller design

parameters, we define a matrix Co that groups all the

controller state matrices (A, B, C, D) in one compact

form as follows,

c (s)

Thus, specification of the matrix Co will completely

define the controller state model. Obviously, for the

case of a static output-feedback design (i.e the con-

troller order r = 0), we simply have Co = D. In

Section 8, we will formulate a control design problem

based on the minimization of a performance index us-

ing the controller C(s) defined in equations (6)-(7).
To examine the entire class of H2-norm based con-

trol problems and to handle the problem of sensitivity

to plant modeling uncertainties, we define the objec-

tive function given in equations (9) and (10). This

formulation turns out to be versatile and well-posed

for the setting of a nonlinear constrained optimiza-

tion problem. However, depending on the types of

disturbance model, that is whether the disturbance

outputs wi(t) are responses to impulse or white-noise

inputs, different definitions for the objective function

are needed. They are given below.

(a) For random impulse inputs rli(t):

s<t,)-- ½ So'+°"
i=l (9)

E[ YeiT( )Q Yc( ) +ti i t uir (t)nlui(t) ] dt}

The expectation operator E[-] is over the ensemble

of the random variables r/_ in the parameterized im-

pulse inputs tli(t) = qi6(t). Control design problems

formulated with the above performance index J(ty)
are often classified under the category of determinis-

tic control. Under this category are, for example, the

familiar control problems of command tracking con-

trol, disturbance rejection of unwanted but known

external input signals, implicit and explicit model-

following designs, H2-control to initial conditions and

H_-control to sinusoidal inputs.

(b) For random white-noise inputs r/i(t):

1 N, [ iTuiT(tl)Riui(t])ii ]W;,E,_, Y* (tl)O Y*(tl)+ (10)J(tl) = '
i=l

The expectation operator Ea,[-] is over the ensem-

ble of the random processes defined in the input vari-

ables rti(t) for a closed-loop system destabilized by

a factor a i. The destabilization effectively adds a

value ai to the diagonal elements of the closed-loop

systcln matrix. With the given performance index,
one can address the entire class of H2-norm based

control design problems. For examp}e, we can solve

for the linear quadratic regulator design (LQ), linear
quadratic gaussian (LQG) design, loop transfer re-

covery (LTR),closed-loop transfer recovery (CLTR),
model reduction based on a minimization of H:-norm

of the error.

Note that the performance indices given in equa-

tions (9) and (10) are evaluated to a finite-time hori-

zon t I. The use of a finite time plays a significant role
in the implementation of a reliable design algorithm

for the optimum steady-state solution. It should be

recognized that the objective function is well-defined

regardless of whether the feedback control-law is sta-
bilizing or not. Furthermore, a class of problems as-

sociated with command tracking of neutrally stable

or unstable target responses (e.g step and ramp com-

mands, sinusoida] trajectories) are only tractable un-

der the setting of a finite-time objective function but



not in the confineof a steady-stateobjectivefunc-
tionwheret! ---* oo. In practice, steady-state results,
whenever possible, are usually achieved when the ter-

minal time t! is equal to five or six times the slowest
time constant in the closed-loop system responses.

There are other unique features, besides the con-

cept of design to a finite terminal time tl, that we

have incorporated into the design objective function

of equations (9)-(10). First of all, this objective func-
tion is not the usual quadratic cost function defined

in traditional linear optimal control problems. It is

instead a weighted average of quadratic performance

indices evaluated over the entire set of design condi-

tions (i = 1,Np). Different weights are assigned to

each plant condition through the scalar variable Wj

where Wj _ 0. Of course, if Np = 1, then we re-
cover the usual quadratic cost function for a single

nominal design condition. The time-weighted factor

e2a't further allows us to impose directly a stability

requirement for the closed-loop eigenvalues. Namely,

when a steady-state design has been achieved and the

optimum objective function is bounded, then closed-

loop system eigenvalues for the controllable modes

will have real parts less than _ai. Finally, the weight-

ing matrices Qi and R i are symmetric and positive

semi-definite matrices. Note that our solution ap-

proach to the minimization of the objective function

d(tl) based on nonlinear optimization does not re-
quire the control weighting matrix R i to be positive

definite. In fact, in some design problems such as

command tracking and model reduction, an objective

function representing simply the tracking or model-

matching errors does not include the control term,
hence R i = O.

In this section, we provide analytical expressions

for the evaluation of the objective function J(l!) and

its gradients cgJ/OCo with respect to the controller
matrix Co. Details of the derivation can be found in

[9]. For simple technicality, the problem formulation

assumes that there is no implicit-loop paths within

the feedback control system. Nanmly, the control in-

put ui(t) or the measurement output y_(t) should not

have any direct link to itself. This translates into the

conditions that one of the product DD_u or D_uD

must be zero. This is not restrictive since in practice

either actuation or sensor dynamics would be incor-

porated into the design models and thereby result-

ing in a system that satisfies the above assumption;
or one can simply reformulate an equivalent problem

with a set of measurement outputs where D_u = 0.

Let's assume without loss of generality that we have

the case of DD_u = 0, then the dosed-loop system

can be written in the form [9] shown in figure 2 or

simply,

= r'i.i(t) with x"(0) = 0 (11)

where

[Fd](n+r+n ') × (n+r+n')

FiT GiG (FiT

Gi DH i, i i iG DD,,,,)H_

B(I+ A+ B(I+
Diu D) H_ i i , iBC, uC D,_D)D,u,H,,,

0 0 F_

(12)

I i i i ]

(F i + G DD, w)D w
i i i= B(, + D.,,D)D,wD (13)

rL

[H%×_.+r+.,) =
(14)

[(I + i ; i ;D,,D)H, iD, uC (I + D,uD)D,_HL]

d i i
[D, ],x m, - [(I + D,t,D)D,wD_] (15)

d
[H, ]p'x(n+_+n') =

i i i i i i i

(16)
and

• i i
[C"]mx (,,+,+,v) = [DHj C DD,_H_] (17)

With these definitions, equations (2), (3) and (7) for

vi(t),v_(t) and ui(t) become

y_(t) = H;ix'i(t) + D_iqi(t) (18)

y_(t) H'ix 'i i i i= (D_uDDsw +Dcw)Dw_ (t) (19)

ui(t) = c'ix'i(t) + nn_n_oi(t) (20)

For a well-posed performance index J(Q), product
i i

of direct feedthrough term (D_,DD_ + Dc_)D w in

the criterion output y_(t) and the penalty weighting

matrix Qi must be zero. Similarly, product of the
i i

direct feedthrough term DD_ D w in the control out-
put ui(t) and the penalty weighting matrix R i must

also be zero. Under these circumstances, the perfor-

mance index J(t]) in equations (9) and (10) can be
written as,

i N,

J (t] ) = -__ W_ Tracel L'(L, )r'w_or 'v }
i=l

(21)

where

Li(t]) = fo ! e(F'+_'t) t

[H_T Qi H_ + CiT RiCi]e(F'+'_'t)rtdt
(22)



In the derivation of the analytical gradients of the

performance index J(t.t ) with respect to design pa-

rameters in Co of the controller state matrices, it is

convenient to express the closed-loop system matrices

in terms of Co explicitly, as suggested in [9],

= D i iF" F_ + (G_o + T_Co 1)Coil° (23)

i ir" = r: + (e'o + T,CoD,)CoO° (24)

H_ i - Y_ + D_CoH_ (25)

C" [DH_ C , i= OD, wH_] (26)

= T,CoH'_

where

[Fo'](.+r+.,)x (.+r+.,) = 0 0 0
0 0 Y_

(27)

[Go](.+.+.,)× (re+r)= 0 I (28)
0 0

[,,]F Dw

[r2(.+_+.,)× _, = o (29)

, [ Hi 0 D_wH_ ] (30)[Ho](p+_)× (,+_+,,) = 0 I 0

i i
[g_lp, x (n+r+-') = [H_ 0 DcwH_] (31)

' [ DiswDi ] (32)[Do](p+_)× m' = 0

[ D_u 0 ] (33)[Dj(p+,-)x (m+_) = 0 0

[D_lp,x (re+r) = [D_u 0] (34)

[T,]m× (._+.) = [I 0] (35)

[00][T_](n+_+n')x (m+_) = 0 I (36)
0 0

[0 0 0] (37)[T3]@+w)x (,+_+,,) = 0 I 0

It has been shown in [9] that derivative of the per-

formance index J(Q) with respect to the controller

matrix Co (i.e c9,]/(9Co) can be obtained explicitly

from the following set of equations,

OJlaCo =

_-_Jv, ,,_ziIr r)iWnu,i TT RC, i)Xi(Q )HioT+i--.l''plt_t"2 "_c +

T'C DiXTrlAiQ _H iT i ,i i iT(Ci+ _ ° x)tJ*" (1) o +£(tl)F W_Do ]+

i li i iT i TTT[.A4i(tl)H_T+£ (tl)F W_O° ](D1Co ) 1}

(38)

where

x'(tl) =

fo I e (r''+°Ot r 'i W_ F'iWe (r'' +_0Tt dt

z_(tl) =

(39)

fo _ e(P''+al)T'( H _iTQ H _i + c'iT RC_i )e ( l_'' +al )t dt

(40)
M'(t:) fo' f_-(r'+°')_('-')'"'_'_'"= e t,l,te WJu c +

CnT Rcti )e( e" +aO*F'i WioFnT e( r" +*OT ¢ de dt

(41)
From equations (21)-(22) and (38)-(41), evaluation

of the performance index d(tl) and its gradients
a,7"/OCo would require algorithms for efficient com-

putation of the following two types of integrals of

matrix exponentials: X(t) = foearBeCr dr and

M(t) = fo fo ea(V-')BeC'DeE" dsdv. In the next

section, we review briefly the numerical algorithm de-

veloped in [9] for the computation of X(t) and A4(t).

3 Current Method for Evalu-

ating X(t) and .M(t)

Previous methods for evaluating X(t) and M(t) in-

volve basically the diagona]ization of the matrices A,

C and E in the exponential functions. The pro-

cedure requires the determination of the eigenval-

ues and eigenvectors of these matrices• It is further

assumed for convenience that similarity transforma-

tions can be constructed from these eigenvectors to

diagonalize the respective matrices. Namely, there

exist nonsingular transformations Va and Vc and VE
such that

A = VAAAVA 1 , C = VcAcVc I , E = VEAEVE 1

(42)

where the matrices AA, Ac and AE are diagonal. Un-

der these assumptions one can express for example

the exponential function of e A_ as

e At = e VAAAVAxt = VAeAAtVA 1 (43)

Usage ofthisdecomposition inthe calculationofX(t)
isshown below.

X(t) = eArBe c_ dr

{]o' }= VA eA_6eAC'dr Vj _ (44)

where B = VA1BVc . Advantage of this approach

is based on the fact that the exponential function



of a diagonalmatrix is alsodiagonal.In this case,

time integration in ,¥(t) can be performed directly by

explicit integration of product of scalar exponential

functions. The resulting numericM algorithm is quite

accurate and efficient, provided that the transforma-
tion matrices VA and Vc are not ill-conditionned. A

similar procedure can also be applied to the evalua-

tion of .M(t). Complete discussion can be found in

Appendices C and D of [9]. However, breakdown of

this algorithm will occur when the matrices A , C

or E become degenerate or near degenerate; a situa-
tion that becomes eminent when we address control

of flexible structures with densely packed modes as

demonstrated in the design examples of sections 8
and 9.

Clearly, in order to have a reliable design algorithm

for optimal low-order output-feedback control synthe-

sis [9], one must develop a robust numerical scheme

to evaluate matrix integrals of the form shown in X(t)

and .M(t) for the case of a degenerate system.

4 Alternative Approaches for

Solving X(t) and Yt4(t)

One rather simple approach is to evaluate

X(t) = ea'Be cr dr , (45)

/o'fo°.M(t) = e'a("-')BeC"De _:" dsdv (46)

directly using techniques based on numerical quadra-

ture. Efficiency of numerical integration techniques

is poor; especially when it requires small integration

step size for satisfactory accuracy in the case of stiff

system matrices A, C and E. Another possibility is

to use some types of algebraic Lyapunov equations

for the solution of ,l'(t) and .M(t). For example, it

can he easily shown that the matrix ,¥(t) can be ob-

tained from the solution of the following Lyapunov
equation,

AX(t)+ X(t)C= [eArBeCr]' 0 (47)

Solution of equation (47) exists if ,_i(A)+ ,ij(C) 7£ O.

This condition will not be satisfied in general for arbi-

trary system matrices A and C. Thus, from practical

purposes X(I) and likewise .M(t) cannot be solved

from a scheme based on Lyapunov equations.
Another possible approach is based on the direct

use of exponential matrix. It is Well-known [12] that

convolution integrals involving matrix exponentials,

as represented in the matrices X(t) and .M(t), can be

derived from the matrix exponential of an augmented

matrix. It can be shown that the matrix ,Y(t) can

be derived from a product of the following matrix

exponentials,

a ,,8,
Thus, computation of X(t) now involves the compu-

tation of a matrix exponential. A simple reliable algo-

rithm for computing the matrix exponential is given
in section 5.

In a similar fashion, one can express the matrix

.M(t) in terms ofa submatrix of a matrix exponential.
To see this, we start from its definition

M(t) ]o'fo°= eA(V-S)BeCVDeES ds dv

i' {/' }= e -a" e'4_'BeCv dv De E"
.I0

-_ --fore-AS {ft'eAVBeCVdu}

*De Es ds

d8

(49)

Let's perform a change of integration variable v =
t - r. We have,

2k4(t) = fote-AS{fot-Sea(t-r)BeC(t-r)dr}

*De E_ ds

= --j(°eA(t-s){j(ot-Se-ArBe-Crdr }

,e Ot De-E(t-S)d( t _ s)e E'

_oteAq {_oqe-ArBe-Crdr}

• eCtDe -Eq dq e _t

foot { foqeA(q-r) BeCtl2e-Cr dr}

,e Ct/2 DeE(t-q) dq (5O)

Notice that part of the integrand in equation (50)

delimited by braces can be replaced by terms involv-

ing the exponential of an augmented matrix. This

follows simply from results developed for the matrix



X(t). With this substitution, we obtain

t A Be cq2

_")--/0 { I'0'e_{[0 -C ]q}[0i]}

*eCq_ DeEO-q) dq

t A Be cq2 _ q)}:/0I'01ex {[0]"
.([o

(51)

{[A,,'"20]}[0]= [I00]exp 0 -C eCtt2D t 0
0 0 E I

In this section, we have shown that the matrices X(t)

and .b_(t) can be formulated in terms of the solu-
tions of some matrix exponentials. Their evaluation

depends therefore strongly on the accuracy and re-

liability of numerical methods for computing matrix

exponential. We will present one such algorithm in

section 5. However for computational expediency,

special consideration must also be taken to ensure

the efficiency of the overall scheme when the upper

limit t is large and one of the matrices A, C or D

is unstable. Also one must economize memory re-

quirements associated with high dimensionality of the
augmented matrix when computing the matrix expo-
nential. These considerations will be elaborated in

sections 6 and 7 where we give precise algorithms for

the computation of the matrices X(t) and j_(t) re-
spectively.

5 Numerical Method for the

Matrix Exponential

Several numerical methods are available for the com-

putation of the matrix exponential [11]. Among all

these, an approximation method based on Pad_ se-

ries is found to be satisfactory [12]. An important

component in any numerical routine for matrix ex-

ponential is the scaling of the matrix argument prior

to the series calculation. Due to the simple result

that e At = (eAt�2) 2, a scale factor in terms of pow-

ers of two (i.e 2 'n) is often used. In this scheme, one

can recover the actual value of the original matrix

exponential by performing m squarings on the ma-

trix exponential of the scaled matrix. The index m
is determined based on the desired size for the scaled

matrix. In our algorithm, scaling is applied to the

original matrix until its c_-norm [[AI[_ falls below
1/2.

As mentioned above, the preferred series approxi-

mation in our computation of the matrix exponential

is the Pad6 series. Let's review some of the unique
features associated with the Pad6 series for the case

of a scalar function _'(z). On its most basic terms,

it is a rational function of z of a preselected order

that approximates the function .T'(z). For a given

choice of the order of the numerator (say N) and of

the denominator (say M), the Taylor series represen-

tation of this Pad6 series must match the power series

representation of S(z) for the first (N+M+I) terms.

Namely,

_'(z) ",, P_M(z) = __J=o A' zi (52)

In fact, the most common form of the Pad_ series

is known as the diagonal sequence where the numer-

ator and the denominator have the same order (i.e

M = N). While it is known that the Pad6 series for

the matrix exponential (i.e _'(z) = e*) converges only

slightly faster than the Taylor series for a scalar argu-

ment, the improvement is more significant for matrix

argument. In the matrix case, Pad6 series involves

computation of a numerator matrix .A/(At) and of a

denominator matrix _D(At). For a diagonal Pad6 se-
ries of order N, we have

Z)(At) v. (2N-I)!N!--.
--- .,-¢- (_N)!(N_I),Ag

(2N-2)!N! /'A$_Z.a_
+ (2N)?2!(N_2)!_,''_] -- ...

(2N-Q? N! (Ai_ i A_ (53)
+ (2N)r,-!(N_i)!_.-o: 7-"

+ (At)

and

A:(At) = l- (2N-1)!N! A_
* (2N)! (N- 1)?--*

(2N-2)! N! ( ,d (12 .

+ (2N)r2?('N-2)!k--'] -- ' " (54)

+ (_i)i (2N.._i)!N! ,(At)i +...
(2N).i.(N-i).

+ (--llN_(At) N

The matrix exponential is simply given by

e At = l)-l(At)Af(At) (55)

Invertibility of T)(At) is usually ensured by proper

scaling of the matrix argument At.
Another important consideration in the Pad6 series

is its length N. Assuming that the matrix At has

been scaled such that ]lAtlloo is less than 1/2, the

parameter N can be choosen according to [12] such
that

2 s-2N (N!)2 < e (56)
(2N)!(2N + 1)! -

where e is a given desired tolerance for accuracy.



With a Pad_seriesof N termswhereN isdeter-
minedfromabove,theapproximationcanbethought
ofastheexactcalculationofamatrixexponentialfor
a"nearby"matrix(At+ E) where E is the error ma-

trix with IIEII_ < ,IJAtll_. The relative error of the

approximation is bounded by the following inequality,

Ilda'+_) - ea'll°° < ellAtll_e'lla'll® (57)
Ilea'll_

Thus, reducing the or-norm of the matrix At would

indeed improve the numerical accuracy of the ma-

trix exponential. It has also been shown that meth-

ods by series approximation yield better accuracy if

the matrix argument has been preconditioned. Addi-

tional improvement may therefore be gained by first

preconditioning the original matrix. Another imme-

diate benefit of lowering the _-norm of the matrix

being exponentiated is that the actual scaling fac-
tor m needed would also be smaller; thereby result-

ing in a fewer number of matrix multiplications in

the squaring procedure. As usual, preconditioning
a matrix tends to bring singular values of that ma-

trix closer together (i.e. lower the condition num-

ber), thus avoiding situation where scaling factor is

predominantly determined by a few large singular val-

ues, and causing significant loss of precision related

to the set of small singular values. The most common

method used in the precondition of a matrix is the Os-

borne's method [14], which minimizes the Frobenius
norm of that matrix (and thus indirectly lowering its

or-norm). However, extensive tests conducted so far
seems to indicate that preconditioning of a matrix did

not yield significant reduction in the _-norm and a

smaller scaling factor to justify the added computa-
tional efforts incurred in the Osborne's method. The

procedure of preconditioning a matrix is nonetheless

recommended from the point of view of improved ac-

curacy (see [15] and[17] ).
In the implementation of our design algorithm for

optimal low-order controller synthesis [9], a value of
e = 10-s has been selected requiring therefore a 4-

terms Pad_ series (i.e N = 4) in the evaluation of the

matrices Xi(t), £i(t) and /vt'(t) of equations (39)-

(41). Additional considerations in the implementa-
tion of the proposed method for computing ,¥(t) and

.A,4(t) are given in sections 6 and 7.

6 Detailed Algorithm for

Computing X(t)

As seen in the previous section, the matrix X(t) can

be evaluated in terms of a matrix exponential as

shown in equation (48). Conceptually, it is a simple

and straightforward procedure to compute the matrix

exponential of any arbitrary matrix using the Pad_
series discussed in section 5. However, it becomes a

nontrivial task when we try to implement an efficient

algorithm that examines carefully the issues related

to accuracy, speed and memory requirement. The
basic difficulties lie in the fact that the matrix ex-

ponential is for an augmented matrix of a particular

form,

13 e-AtX(t)
exp{[--O A c]t}: [ e-a'

]
0 eC_ J (58)

where A = C T = F li +aiI according to our problem

in equations (39) and (40) for the matrices ,¥i(tl) and

£i(tl) respectively. Clearly, if the system matrix A

is stable (i.e all the eigenvalues of the matrix A have

negative real parts) then one could easily encounter
numerical overflow when evaluating the term e -At

even though the matrix integrals X(t) and £(t) of in-

terest are perfectly well-behaved. The overflow prob-

lem occurs most likely in the final squaring process.
To arrive at a feasible approach in the evaluation of

X(I), one needs to examine in details the steps taken

in arriving at the matrix exponential of the original

matrix starting from that of a scaled matrix (i.e in

the squaring process).
Let's assume that one has scaled the input matrix

A by AAt where At is a reasonably small time inter-

val given by At = tin = t/2 m. Thus, we need to first
evaluate

exp 0 C At where At=t/n=t/2 m.

For notation convenience, we define

ezp{[-Z B

e-Aa' foa'eca'ea'B c ] (59)

Furthermore, let W = ezp(AAl) = D -l. Now we can

write our result as follows,

X(t) = W'_[Dn-IE+Dn-2EF
+D,,_3EF_ + ... + EF,,_I] ' (60)

or

,t"(t) = W[E+WEF+W2EF2 + .. .+W"-_EF'*-_].
(61)

The above results are produced by performing m

squarings°f [ D0 E]F and takingtheappropriate

submatrix for X(t). In our application (cf. equations



(39)-(40)),the solution would therefore involve prod-
ucts of matrices of size 2(n + r + n'). Close examina-

tion of equation (61) leads to the following algorithm

involving only product of matrices of size (n + r + n')

with the final result achievable in m steps,

Step 1 :

/91 = W, QI = E, R1 = F

Step 2 :

P: = P?, Q2 = Q1+ R2 =
P1Qx Rx,

Step m :

Pm = p.2 Qm = Qm-1+ Rm = R _rn--1 m-1

Finally, X(t) = WQ,_. It should be noted that one

can "absorb" this extra factor of W (= e AAt) into tile

matrix Ql without any change to the above algorithm

(i.e starting the above algorithm with Q1 = WE in-

stead). This removes the need to retain the matrix

W throughout the computation.

Finally, one notes that the terms Pi or R/ for

(i = 1,m) may underflow and become a null matrix

for some i; in particular when the scaling factor is

large (i.e m large). When this situation happens, one

can simply truncate the series calculation for X(t)

up to the i th step in the above algorithm since all

of the significant (and nonzero) terms have already

been accumulated into the matrix Q,.

7 Detailed Algorithm for

Computing M(t)

Here tile numerical algorithm is a bit involved com-

pared to the one given for the calculation of X(t).

This is largely due to the increased complexity of

the argument of the matrix exponential. Following
the procedure described in section 6, let's perform a

scaling upon the input matrix A by AAt such that

computation of the matrix quantities Ado, H, J, P, U

and W = V -1 is well-behaved. These quantities are

defined from the following matrix exponential,

exp 0 -C eCt/2D At

0 0 E

[ p HeCt/2 Ado ] (62)
= 0 V cCt/2J

0 0 U

Due to the possible numerical underflow in the matrix

ect/2 for large t, the matrices H and J are computed

directly from the following definitions,

_0 "x#
H = eArBe Cr dre -c_t (63)

and

ff'J = e -cA_ eCrDe Er dr (64)

However, the computation of Ado in equation (62) can
still underflow due to its explicit dependence on e ctl2.

For the calculation of the matrix Ad(t), ideally it can
be obtained from m squarings of equation (62). If

carried out in this manner, potential numerical over-

flow is eminent since, according to our equation for

Adi(tl) in (41), we have A T = C = E T = F i +ctiI.

Hence, if the matrix C is stable, then the matrix ex-

ponential e -ct = V" will become unbounded. To

bypass this difficulty, as in the calculation for X(t),
one needs to conduct the squaring algorithm explic-

itly. It can be shown that the matrix Ad(t) can be

computed as

Ad(t) = P"-I.&4o + Pn-_./t4oU
+ Pn-3AdoU2 + ... + PAdoU n-2

+ MoU n-1
+ HW_J + HW3j U + PHW3 J (65)

+ PHW4JU + P_HW4J + ...

+ P"-_'HW"J

This formulation no longer involves the matrix V.

The above series for Ad can be distinguished into

two parts--one that contains the matrix .&4o and the

other that does not. The terms involving Ado can be

thought of as

[i 0][P Mo ]" 00 U [I] (66)

which can be performed by m squarings. The remain-

ing terms involving H, J, W, P, and U are computa-
tionally intensive and are of the form

n--2 rl--2

Z Z Pi HW2+i+J JU j, where 2+i+j<_n.
i=O j=O

(67)
This equation, owing to the restriction 2 + i + j _< n,

is not easily calculated in m(= log.2(n)) steps. A rea-

sonably efficient procedure for computing the final

matrix Ad(t) is to merge both the easily computed

portion given in equation (66) and the more difficult

series in equation (67) into a sequence of m steps, as

shown in figure 3. Due to potential numerical under-

flow, the term W i-'_ is not accurately obtained from
the product WiV 2 where V = W -1. Indeed one

needs to recompute the term W "+_-_' at each step



of theabovealgorithm.Thiscouldbecomethema-
jor drawbackofourschemeeventhoughwehaveused
anefficientmatrixexponentiationroutineto compute
W i requiring at most 2 * log2(i) matrix multiplies.

If in addition W" is zero (or effectively so), restric-

tion on the indices i and j of2+i+j < n in equation

(67) becomes inconsequential; hence we can express

n-2 ,_-2 Pi HW2+i+j)-_i=o _-_j=o JUJ =

(H + PHW + P2HW 2 + "")W 2

• (d+ WJU + W_JU 2 +...)

resulting in a simpler algorithm involving the follow-

ing three terms:

(a) [i 01 0 u I

(b) (H + PHW + P2HW s +... + P"-SHW "-s)

(c) (J + WJU + WSJU 2 + ...+ W"-2JU "-s)

This algorithm can again be computed in m steps as

seen in figure 4, but now there is no costly evaluation

of a W k term at each step.

Further simplification of the above algorithm can
be achieved if we make use of the fact that we have

A = E = C T (cf. equation (41)) and therefore

U = P = W T. If, for some index j < m, W s' (and

likewise U s3 and Psj) is zero or nearly so, then this

calculation for .hA(t) is reduced to ./t4(t) -" HjWSJj

since Mm = 0 , Hj "" Hm , and Jj - jm.

In the following sections, we compare the useful-

ness of the proposed algorithm to the early algorithm

presented in [9] in the design of low-order optimal

controllers for two flexible mechanical systems .

8 A Simple Two-Mass-Spring

Design Problem

Control of flexible mechanical systems has been of in-

terest in recent years [18]. This problem provides us

a simple design case where degeneracy in the closed-

loop eigensystem can be easily illustrated. The prob-

lem is to control the displacement of the second mass

by applying a force to the first mass as shown in Fig-
ure 5. At the start, it is simple to verify that the basic

open-loop system has a pair of degenerate eigenval-

ues at the origin. Equations for the dynamic model

are given below,

mill'1 = k(y2 - Yl) + u + w
(68)

or

d

Yl

Y_ =
Y2

1 0

0 -A:lml
0 0

0 k/ms
0

l/ml
+ 0

0

0 0

0 k/mt
1 0

0 -k/ms

(u + w)

Yl

yl
Ys

(69)

where ml = ms = kl = ks = 1. For comparison,

we have obtained an optimal second-order controller

design of the form,

m_[0 1], [0]A21 As2 ' 1

C = [C1, C121; D = [Dill

using both algorithms. The control design problem
is to minimize the following H2-norm of the closed-

loop transfer function T_to between the disturbance

w and the displacement yu of the second mass through

the controller design parameters Asl,A2s,CII,CI._

and Dxl. We start with the following arbitrary ini-

tial design guess of Asx = -2, A22 = -1,Cll =

0,Cls = 0.5, and Dll = 0. Both algorithms con-

verge effectively to the same optimal design gains
of A21 = -0.8571,A2s = -0.9258, CH = 0,C12 =

-0.4535 and DI, = -0.2449 and with an optimum

value IITy_II_ = 7.71838215122. A summary of the

resulting closed-loop eigenvalues is given in Table 1.

The main difference between the two algorithms is in

the CPU time for the overall computation. Results

are obtained for a VAX/VMS-Workstation DEC-3500

as follows: CPU time of 19.59sec with the algorithm

based on diagonalization and 97.36sec using the pro-

posed method. The increase in computational load is

expected and constitutes the basic trade-off between

reliability and speed of the solution algorithm. The

proposed algorithm is more reliable and with this ad-

vantage does take a bit longer in computational time.

With the early algorithm of [9], one cannot initiate

the search for an optimal compensator design with

zero gains (i.e A._I = A2._ = Cll = Cl._ = Dll = 0)

because, in this case, the closed-loop system would

have two pairs of degenerate eigenvalues at the ori-

gin; one for the rigid-body mode and the other from

the open-loop compensator poles. To alleviate this
problem, it was suggested that one simply starts with

any compensator design (stabilizing or not) that pro-

duces initially a non-degenerate closed-loop system.

Even with these considerations, it was found that oc-

casionally the algorithm could break down due to the

l0



presenceof neatdegeneraciesin theclosed-loopsys-
temmatrix.Thus,forareliabledesignmethod,solu-
tionalgorithmmusttreatdegeneraciesasacommon
occurrence.Thissituationismoreevidentin theop-
timaloutput-feedbackcontroldesignfor high-order
structuralmodelswithcloselypackedflexiblemodes.

Futureconsiderationwouldbeto developahybrid
algorithmtakingadvantageofthecomputationaleffi-
ciencyofdiagonalizationwhentheclosed-loopsystem
matrixis notdegenerate,andturningto thecurrent
algorithmwhendegeneraciesaredetected.System
degeneracycanbeeasilycheckedfromthecondition
numberof theeigenvectormatrix.

In thenextsection,wepresenta designproblem
wheredegeneraciesoccurfrequentlyandthereforeit
couldposea seriousdifficultyfor theearlydesign
algorithmbasedondiagonalization.

9 The JPL Large Space Struc-

ture Control Design

In control problems for large flexible mechanical sys-

tems such as space structures, causes of eigenvalue

degeneracies are usually more subtle in nature than

the simple case presented in section 8 for a two-

mass-spring system. The JPL large space structure

has been carefully designed to simulate a lightweight,

non-rigid and lightly damped structure in a weight-

less environment [16]. The structure itself resembles

a large antenna with a central boom-dish apparatus
and an extended dish consisted of hoop wires and 12

ribs (Figure 6). There are two torque actuators (la-

belled HA1 and HA10) on the boom and dish struc-

ture to control the two angular degrees of freedom

in pointing maneuver, and force actuators at four rib

root locations (labelled RA1, RA4, RA7 and RA10)
for vibration control. From the point of view of con-

trol design, it is a challenging problem since the plant

has many closely spaced modes and is of reasonably

high order. There are a total of 30 modes in the ba-
sic structural model. The flexible modes are lightly

damped with damping ratios ranging from 0.007 to

0.01. The two rigid-body modes have a damping ra-

tio of 0.12. Our design concept is to use two available

angular displacement sensors HS1 and HSIO of tile

boom-dish apparatus and tile two torquers HA1 and

HA10 collocated with these sensors for control syn-

thesis. With this selection, 20 of the flexible modes

associated primarily with tile rib motion become un-
controllable and unobservable. These modes are re-

moved by modal truncation from our plant synthesis

model. Eigenvalues of tile remaining 10 modes are
shown in Table 2.

An optimal low-order controller is designed to

dampen vibration of the antenna to external exci-
tations. To evaluate the effectivenes of the control

system, we perform the following test. The entire

structure is agitated using the two boom-dish actua-
tors for the first 6.4 seconds with an applied torque

in the form of a square wave of 0.8 second in width

and with an amplitude of 1 N-m. The control system

is then activated right after the excitation has been

removed, and responses of the excited structure at
the sensors are examined. The design objective is to

damp out the induced vibration as fast as possible
without excessive use of controls. Note that the nat-

ural responses of the structure will take about a few

minutes to decay to zero (Figure 8).

For practical implementation, the controller design

is choosen to be of 6 th order and has the following

form,

U

A

-50 0 Ala A14 A15 Als

0 -50 A2a A24 A25 A26
0 0 0 1 0 0

0 0 A43 A44 0 0

0 0 As3 A54 0 1

0 0 As3 A64 Ass A66

Bll B12

B._I B22

Bal B32

B4z B42

Bsl Bs_

B61 B62

70)

c = [ 50 ° ° ° ° °]0 500000

[0 0]D = 0 0

The first two states in the controller model serve as

roll-filters, limiting the control bandwidth to less than

50rad/sec. In the design optimization, we have a to-

tal of 28 design variables: 16 in the controller A ma-

trix and 12 in the B matrix. The objective function

for design optimization consists of a sum of weighted

H2-norms of physical response variables observed at
different location of the structure. It is of the form

J(O) =

Lira _ QiE_ [y?(Q)] + E RiE¢, [u_(t/)]
_.t _°° j=l

(71)

Note that the expectation operator Ea[-] is for a

system destabilized by a factor or. Table 3 lists the

11



designvariablesyi and their corresponding penalty

weightings Qi. Also given in the table are the con-

trol design weightings Rj for the actuators HA1 and

HA10. Responses in the above objective function are
evaluated to random disturbances of unit white-noise

spectra applied simultaneously at all the hub and rib
actuators.

The design optimization begins with the following

arbitrary initial guess on the controller matrices A

and B,

A

-50 0 1 0 0 0

0 -50 0 0 1 0

0 0 0 1 0 0

0 0 -2 -1 0 0

0 0 0 0 0 1

0 0 0 0 -4 -4

B

0.1 0

0 0.1

0 0

0 1

0 0

1 0

A destabilization factor orof 0.071 was used to ensure

that all the closed-loop eigenvalues have a real part

less than -0.071. The optimization fails to converge

when a destabilization factor of greater than 0.075

was selected. This difficulty seems to be in moving

the modes at 1.68 Hz under this controller configu-

ration, implying that additional degrees of freedom
must be added to the controller structure given in

equation (70).
While the optimization convergence itself took 13.5

hours on a VAX/VMS Workstation DEC-3500, the

proposed algorithm for the calculation of the objec-

tive function and its gradients with respect to the de-

sign parameters is robust and leads to well-behaved

design convergence. The final optimal values of the
A and B matrices are shown in Figure 7. Closed-loop

eigenvalues are given in Table 4. Primary improve-
ment is seen in the increased damping of two modes

at 0.65 Hz.

Closed-loop responses of the sensor and control

variables corresponding to this design are shown in

Figure 8. The controlled responses decay to zero in
about 20sec after the excitation has been removed.

Notice that the control torques are within the desired

limits of 1 N-m; the results are obtained through ad-

justment of the control design weights Rj in Table

3. This design example demonstrates the usefulness

of a design algorithm for robust low-order controllers

using parameter optimization, and the accompany-

ing improvement of solution reliability using the al-

gorithms described in sections 6 and 7 for degenerate

systems.

10 Conclusions

Numerical algorithms for computing matrix exponen-

tials and integrals of matrix exponentials have been

developed to handle cases where the system matrix is

degenerate. Numerical optimization combined with

the given algorithms for the evaluation of the cost
function and its gradients with respect to the con-

troller design parameters has well-behaved conver-

gence even when the closed-loop system becomes de-

generate. These algorithms have been incorporated

into a computer-aided-design package for synthesiz-

ing optimal output-feedback controllers. Reliabil-

ity of the algorithm has been demonstrated using

typical design problems encountered in the control

of flexible structures. Clearly this algorithm when

combined with a previous one based on diagonaliza-

tion would enhance significantly the overall reliabil-

ity of the optimal design procedure for low-order con-
trollers, thereby providing an effective automated de-

sign environment for multivariable control synthesis.
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Eigenvalue Damping

-0.2290 _ 0.3397i 0.559

-0.1553 ± 0.8480i 0.180

-0.0786 _ 1.2950i 0.061

Freq (Hz)
0.0652

0.1372

0.2065

Table 1: Closed-Loop Modes (2 Mass-Spring System)

Eigenvalue Damping Freq (Hz)

-0.09500 ± 0.7860i

-0.08575 ± 0.7093i

-0.02802 i 4.0024i

-0.02929 ± 4.1844i

-0.07405 _ 10.583i

-0.07405 ± 10.583i

-0.11310 ± 10.616i

-0.11785 ± 16.384i

-0.21365 ± 30.520i

-0.21365 i 30.520i

0.120

0.120

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.12600

0.13704

0.63701

0.66598

1.68434

1.68434

2.57123

2.67929

4.85749

4.85749

Table 2: Open-Loop Modes of Antenna Structure

Variable Qi

RS1 4100

RS4 3950

RS7 3975

RSIO 4050

HS1 16500

HSIO 15600

RS1 1100

RS4 1050

RS7 1150

RS10 1025

HS1 3900

HS10 4190

Variable Ri

HA1 41

HA10 40

Description

Rib #1 root velocity

Rib #4 root velocity

Rib #7 root velocity

Rib #10 root velocity

Hub angular velocity

Hub angular velocity

Rib #1 root displacement

Rib #4 root displacement

Rib #7 root displacement

Rib #10 root displacement

Hub angular displacement

Hub angular displacement

Description

Huh torque actuator

Hub torque actuator

Table 3: Design Variables for Antenna Structure
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Eigenvalue Damping Freq(Hz)

-0.086899 4- 0.6588i

-0.089071 4- 0.7410i

-0.3165 4- 3.624i

-0.2528 4- 3.790i

-0.2162 4. 4.112i

-0.2056 4. 4.185i

-0.074193 4- 10.58i

-0.074589 4- 10.58i
-0.1168 4- 16.15i

-0.1253 4- 16.83i

-0.2142 4- 30.52i

-0.2143 4- 30.52i

-49.99

-49.99

0.1308

0.1193

0.0870

0.0666

0.0525

0.0491

0.0070
0.0070

0.0072

0.0074

0.0070

0.0070

1.000

1.000

0.1058

0.1188

0.5790

0.6045

0.6553

0.6669

1.684

1.684

2.570

2.678

4.857

4.857

7.956

7.956

Table 4: Boom-Dish-Controller Closed-Loop Modes

i

wi( S) _ Yc (s),.._

ui(s) pi(s)
(i = 1,Np)

yis(s)

Figure h A Typical Closed-Loop System with a Feedback/Feedforward Controller

[ _'(t) ]
_(t) =

xL(t) [ ][ ]F i + GiDHj G_C (F' + G DD,,_)H_ x'(t)

D,_D)H, A + + D, uD)D,,og w z(t)B(I+ i i BC_uC B(I i i i

o o F_ _'_(t)
(I "i + a DD,w)D,o

i i i+ B(I+D,_D)D,_D_, ¢(0
r_

Figure 2: State Model of the Closed-Loop System

14



Step 0 :
._/lo H J

Step 1 :
14x = P14o + 14oU H, = H J, = J

+HW" J +PHW + WJU

Step 2 :
14_ = P2141 +141U 2 H_ = H1 J_ = J1

+ H, Wn-_ Jl + P2 HI W _" + W_ J, U _"

Step 3 :
./Via = P4142 + 14_U 4 Ha = H_ J3 = J_

+ H2 Wn-6 J2 + p4 H2 W 4 + W4 J2U 4

Step j :

A4j = P2J-'Mj_, + Mj_,U _'-' Hy = Hi-1 J� = Jj-,

+Hi_, W-+_-2' jj_1 +p_J-'Hj_lW _J-' +W-_'-' j./_ 1U _i-'

Step m :

2vlm = Pn/_Mrn-, + M"`-,U "/_ H,n = Hm-x Jm = Jm-1

+Hra_xW2J"`_I +P"I_Hm_,W "/e +Ivn/2Jrn_lUnl 2

14(t) = 14.,

P

p2

p4

p8

p_J

p_

V 4

U 8

U 2_

U"

W 4

W _

W 2J

W n

Figure 3: An m-Step Calculation of l//(t)
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St ep 0 :

Step 1 :
2dl = P._o + ./_4oU

Step 2 :
./_42 = P2./(4, + ./(41U 2

Step 3 :
._4 3 = P4.h]4 2 + .'_2U 4

H J

Ha = H Jx = J
+PHW +WJU

H2 = H1 J_ = J1

+p2H l W s +WSJIU s

Ha = Hs J3 = Js

+p4H2W4 +W4J2U 4

Step j :
• 1 -

?_4j = pS'- A_j_ 1

+.Mj_IU s'-'

Step m :

._ m : pn / 2.h_ rn -1

+.t_4m_ 1U "/2

M = ./Qm + H._W_Jm

nj _ nj-1

+ p2J-' Hj_ I W2'-'

Hm = H,n- 1

+ Pnl2 Hm- 1W '_12

Jj : Jj-i

+W_-'-_ j__IU 2"-'

+Wn/2Jm_lUn/2

U P W

U s p2 W s

U 4 p4 W 4

U s pS W s

U 2i ps, W sJ

U n pn W n

Figure 4: A Simplified m-Step Calculation of.A4(t)

- Iu,w ly___1 k

Mass 1 _ Mass2

Figure 5: A Two-Mass-Spring Mass System

16



Top View

Side View Boom?
Ri b s'_-_

I ,-, t
Figure 6: Antenna Structure
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a

-5O

0

0

0

0

0

0 2.874 -2.270 1.7322 x 10 -3 -2.2131 x 10 -4

-50 1.225 0.7825 6.551 - 1.037

0 0 i 0 0

0 -15.73 -0.8799 0 0

0 1.560 0.2256 0 1

0 2.400 -1.269 -13.62 -0.9810

n

5.343 -1.2310 x 10 -4

6.2118 x 10 -4 4.783

2.701 -8.1595 x 10 -4

2.221 9.3152 × 10 -4

-0.5147 5.379

1.614 -1.252

Figure 7: Optimized Controller Matrices for LSCL Problem
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Figure 8: Open-Loop (solid curve) versus Closed-Loop (dashed) Responses
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